Ivacaftor is an essential component of triple combination CFTR modulator therapy for pharmacological restoration of F508del-CFTR function and mucociliary clearance in cystic fibrosis airways. The cover image shows pseudocolored bead tracks that visualize mucociliary transport (MCT) velocity. MCT is determined from transport rates of fluorescent beads added on the surface of primary nasal epithelial cultures grown at air-liquid interface.
Background. NK cell function is impaired in people with HIV (PWH), hindering their potential to reduce the lymphoid tissue (LT) reservoir. The IL-15 superagonist N-803 has been shown to enhance NK and T cell function, and thus may reduce viral reservoirs. Methods. To determine the impact of N-803 on LTs, we conducted a clinical trial where 10 PWH on effective antiretroviral therapy (ART) were given three 6 mcg/kg doses of N-803 subcutaneously. We obtained PBMCs and lymph node (LN) and gut biopsies at baseline and after the last N-803 dose. Results. We found a non-statistically significant ~0.50 median log reduction in the frequency of viral(v)RNA+ and vDNA+ cells/g in the 6 participants with baseline and post-treatment LNs. In the ileum, we observed reductions of vRNA+ cells in 8/10 participants and vDNA+ cells in all participants. We also found significant inverse correlations between NK cell proliferation and the frequency of vRNA+ cells, and between NKG2A expression on NK cells and the frequency of vRNA+ cells. Conclusions. Our findings suggest N-803 may reduce the HIV reservoir in LTs of PWH on ART, an effect likely mediated by enhanced NK cell function. Controlled studies assessing the impact of NK cell therapy on HIV LTs are needed.
Joshua Rhein, Jeffrey G. Chipman, Gregory J. Beilman, Ross Cromarty, Kevin Escandón, Jodi Anderson, Garritt Wieking, Jarrett Reichel, Rodolfo Batres, Alexander Khoruts, Christopher M. Basting, Peter Hinderlie, Zachary B. Davis, Anne Eaton, Byron P. Vaughn, Elnaz Eilkhani, Jeffrey T. Safrit, Patrick Soon-Shiong, Jason V. Baker, Nichole R. Klatt, Steven G. Deeks, Jeffrey S. Miller, Timothy W. Schacker
Kidney thick ascending limb cells reabsorb sodium, potassium, calcium, magnesium and contribute to urinary concentration. These cells are typically viewed as a single type that recycles potassium across the apical membrane and generates a lumen-positive transepithelial voltage driving calcium and magnesium reabsorption, although variability in potassium channel expression has been reported. Additionally, recent transcriptomic analyses suggest that different cell types exist along this segment, but classifications have varied and have not led to a new consensus model. We used immunolocalization, electrophysiology and enriched single nucleus RNA-Seq to identify thick ascending limb cell types in rat, mouse and human. We identified three major TAL cell types defined by expression of potassium channels and claudins. One has apical potassium channels, low basolateral potassium conductance, and is bordered by a monovalent cation-permeable claudin. A second lacks apical potassium channels, has high basolateral potassium conductance and is bordered by calcium- and magnesium-permeable claudins. A third type also lacks apical potassium channels and has high basolateral potassium conductance, but these cells are ringed by monovalent cation-permeable claudins. The recognition of diverse cell types may resolve longstanding questions about how solute transport can be modulated selectively and how disruption of these cells leads to human disease.
Hasan Demirci, Jessica P. Bahena-Lopez, Alina Smorodchenko, Xiao-Tong Su, Jonathan W. Nelson, Chao-Ling Yang, Joshua N. Curry, Xin-Peng Duan, Wen-Hui Wang, Yuliya Sharkovska, Ruisheng Liu, Duygu Elif Yilmaz, Catarina Quintanova, Katie Emberley, Ben Emery, Nina Himmerkus, Markus Bleich, David H. Ellison, Sebastian Bachmann
H7N9 avian influenza virus is a zoonotic influenza virus of public health concern, with a 39% mortality rate in humans. H7N9-specific prevention or treatments for humans have not been approved. We previously isolated a human monoclonal antibody (mAb) designated H7-235 that broadly reacts to diverse H7 viruses and neutralizes H7N9 viruses in vitro. Here, we report the crystal structure of H7 HA1 bound to the fragment antigen-binding region (Fab) of recombinant H7-235 (rH7-235). The crystal structure revealed that rH7-235 recognizes residues near but outside of the receptor binding site (RBS). Nevertheless, the rH7-235 IgG potently inhibits hemagglutination mediated by H7N9 viruses due to avidity effect and Fc steric hindrance. This mAb prophylactically protects mice against weight loss and death caused by challenge with lethal H7N9 viruses in vivo. rH7-235 mAb neutralizing activity alone is sufficient for protection when used at high dosed in a prophylactic setting. This study provides insights into mechanisms of viral neutralization by protective broadly reactive anti-H7 antibodies informing the rational design of therapeutics and vaccines against H7N9 influenza virus.
Iuliia M. Gilchuk, Jinhui Dong, Ryan P. Irving, Cameron D. Buchman, Erica Armstrong, Hannah L. Turner, Sheng Li, Andrew B. Ward, Robert H. Carnahan, James E. Crowe Jr.
Loss-of-function mutations in the GBA1 gene are a prevalent risk factor for Parkinson’s disease (PD). Defining features are Lewy bodies that can be rich in α-synuclein (αS), vesicle- and other lipid membranes coupled with striatal dopamine loss and progressive motor dysfunction. Of these, lipid abnormalities are the least understood. An altered lipid metabolism in PD patient-derived neurons, carrying mutations in either GBA1, encoding for glucocerebrosidase, or αS can shift the physiological αS tetramer-monomer (T:M) equilibrium, resulting in PD phenotypes. We previously reported inhibition of stearoyl-CoA desaturase (SCD), the rate-limiting enzyme for fatty acid desaturation, stabilized αS tetramers and improved motor deficits in αS mice. Here we show that mutant GBA-PD cultured neurons have increased SCD products (monounsaturated fatty acids, MUFAS) and reduced αS T:M ratios that were improved by inhibiting SCD. Oral treatment of symptomatic L444P- and E326K Gba1 mutant mice with 5b also improved the αS T:M homeostasis and dopaminergic striatal integrity. Moreover, SCD inhibition normalized GCase maturation and dampened lysosomal and lipid-rich clustering, key features of neuropathology in GBA-PD. In conclusion, this study supports brain MUFA metabolism links GBA1 genotype and wildtype αS homeostasis to downstream neuronal and behavioral impairments, identifying SCD as a therapeutic target for GBA-PD.
Silke Nuber, Harrison Hsiang, Esra'a Keewan, Tim E. Moors, Sydney J. Reitz, Anupama Tiwari, Gary P. H. Ho, Elena Su, Wolf Hahn, Marie-Alexandre Adom, Riddhima Pathak, Matthew Blizzard, Sangjune Kim, Han Seok Ko, Xiaoqun Zhang, Per Svenningsson, Dennis J. Selkoe, Saranna Fanning
In asthma, airway epithelial remodeling is characterized by aberrant goblet cell metaplastic differentiation accompanied by epithelial cell hyperplasia and hypertrophy. These pathologic features in severe asthma indicate a loss of control of proliferation, cell size, differentiation, and migration. mTOR is a highly conserved pathway that regulates protein synthesis, cell size, and proliferation. We hypothesized that the balance between mTOR and autophagy regulates mucous cell metaplasia. Airways from individuals with severe asthma showed increased mTOR signaling by RPS6 phosphorylation, which was reproduced using an IL-13-activated model of primary human airway epithelial cells (hAECs). mTOR inhibition by rapamycin led to a decrease of IL-13-mediated cell hypertrophy, hyperplasia, and MUC5AC mucous metaplasia. BrdU labeling during IL-13-induced mucous metaplasia confirmed that mTOR was associated with increased basal-to-apical hAEC migration. mTOR activation by genetic deletion of Tsc2 in cultured mouse AECs increased IL-13-mediated hyperplasia, hypertrophy, and mucous metaplasia. Transcriptomic analysis of IL-13-stimulated hAEC identified mTOR-dependent expression of genes associated with epithelial migration and cytoskeletal organization. In summary, these findings point to IL-13-dependent and independent roles of mTOR signaling in the development of pathogenic epithelial changes contributing to airway obstruction in severe asthma.
Katrina M. Kudrna, Luis F. Vilches, Evan M. Eilers, Shailendra K. Maurya, Steven L. Brody, Amjad Horani, Kristina L. Bailey, Todd A. Wyatt, John D. Dickinson